Clustering of Web Search Results Using Semantic

نویسندگان

  • P. P. Shelke
  • A. S. Alvi
چکیده

Clustering is related to data mining for information retrieval. Relevant information is retrieved quickly while doing the clustering of documents. It organizes the documents into groups; each group contains the documents of similar type content. Different clustering algorithms are used for clustering the documents such as partitioned clustering (K-means Clustering) and Hierarchical Clustering (Agglomerative Hierarchical Clustering (AHC)). This paper presents analysis of Semantic Suffix Tree Clustering (SSTC) Algorithm and other clustering techniques (K-means, AHC, and Lingo). SSTC perform the clustering and make the clusters based on synonyms shared between the documents. SSTC is faster clustering algorithm for document clustering as it is incremental. Keywords— Suffix tree, document clustering, semantic clustering, SSTC algorithm, partitioned clustering

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical Fuzzy Clustering Semantics (HFCS) in Web Document for Discovering Latent Semantics

This paper discusses about the future of the World Wide Web development, called Semantic Web. Undoubtedly, Web service is one of the most important services on the Internet, which has had the greatest impact on the generalization of the Internet in human societies. Internet penetration has been an effective factor in growth of the volume of information on the Web. The massive growth of informat...

متن کامل

Centralized Clustering Method To Increase Accuracy In Ontology Matching Systems

Ontology is the main infrastructure of the Semantic Web which provides facilities for integration, searching and sharing of information on the web. Development of ontologies as the basis of semantic web and their heterogeneities have led to the existence of ontology matching. By emerging large-scale ontologies in real domain, the ontology matching systems faced with some problem like memory con...

متن کامل

Query Architecture Expansion in Web Using Fuzzy Multi Domain Ontology

Due to the increasing web, there are many challenges to establish a general framework for data mining and retrieving structured data from the Web. Creating an ontology is a step towards solving this problem. The ontology raises the main entity and the concept of any data in data mining. In this paper, we tried to propose a method for applying the "meaning" of the search system, But the problem ...

متن کامل

Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

  One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...

متن کامل

Improving Web Search Results Using Semantic Clustering

This paper consider the problem of search engine that are not capable of retrieving appropriate result on query given. Most of the users are not able to give the appropriate query to get what exactly they wanted to retrieve. So the search engine retrieves a massive list of data, which are ranked by the page rank algorithm or relevancy algorithm or human judgment algorithm. If the relevant resul...

متن کامل

Document Clustering Using Semantic Cliques Aggregation

The search engines are indispensable tools to find information amidst massive web pages and documents. A good search engine needs to retrieve information not only in a shorter time, but also relevant to the users’ queries. Most search engines provide short time retrieval to user queries; however, they provide a little guarantee of precision even to the highly detailed users’ queries. In such ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013